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Abstract
The main properties of the power filtering operation in the fractional Fourier
domain and its relationship to the differentiation operation are considered. The
application of linear power filtering for solving the phase retrieval problem
from intensity distributions only is proposed. The optical configuration for the
experimental realization of the method is discussed.

PACS numbers: 02.30.Nw, 42.30.Kq

The usefulness of the Fourier transform (FT) is often related to the simplification of the
differentiation operation, which permits one to solve a number of differential equations. Thus,
power filtering in the Fourier domain is related to the signal derivative as

R−π/2[Fπ/2(u)un] (x) = (−i)n
dnf (x)

dxn
(1)

where Fπ/2(u) is the FT of f (x) and R−π/2[·] denotes the inverse Fourier operation,
cf equation (2). Also note that the first and the second derivatives (or power filtering for
n = 1, 2) are widely used for edge characterization.

The introduction of the fractional FT to quantum mechanics, paraxial optics and
signal/image processing [1–4] has permitted the simplification of the description of the
corresponding systems and the development of new methods for signal analysis [5]. Thus, the
fractional correlation and convolution operations related to filtering in the fractional Fourier
domain were extensively studied previously [6–8]. Nevertheless, the question of power
filtering in the fractional Fourier domain and its relationship to the differentiation operation
does not seem to have been considered in the literature and is the subject of this paper.

The fractional FT is a generalization of the ordinary FT. Its kernel depends on a parameter
that can be interpreted as a rotation angle in phase space. The fractional FT of a function f (x)

for an angle α is defined as [4]

Rα[f (x)] (u) = Fα(u) =
∫ ∞

−∞
f (x)K(α, x, u) dx (2)
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where the kernel is given by

K(α, x, u) = exp(iα/2)√
i2π sin α

exp

[
i
(x2 + u2) cos α − 2xu

2 sin α

]
. (3)

The kernel of the fractional FT is periodic in α. For α = 0 the fractional FT corresponds to
the identity operation, F0(u) = f (u), and for α = π/2 and 3π/2 it reduces to the FT and the
inverse FT, respectively; moreover Fπ(u) = f (−u). The fractional FT is additive with respect
to α, Rα+β = RαRβ , and—as can easily be seen from equation (3)—the kernel K(−α, x, u)

of the inverse fractional FT, R−α is equal to K∗(α, x, u).
The kernel of the fractional FT is, except for a phase shift α/2, a propagator of the

non-stationary Schrödinger equation for a harmonic oscillator (here dimensionless variables
are used): [

∂

∂α
− i

2

∂2

∂x2
+

i

2
x2

]
�(x, α) = 0.

The same equation describes in the paraxial approximation of scalar diffraction theory the
complex field amplitude �(r, z) during its propagation through a medium with a quadratic
index of refraction n2 = n2

0(1 − g2r2) [3, 5]. In this case we have α = gz and x = √
kgr ,

where r and z are the transversal and longitudinal coordinates, respectively, and k is the
wavenumber. The fractional FT of the complex field amplitude as well as the ordinary FT can
also be performed by using a thin lens with focal distance f, with the input and output planes
located at distances d = 2f sin2 α/2 before and after the lens, respectively [9].

Based on the additivity property of the fractional FT, equation (1) can easily be generalized
as

R−π/2[Fα+π/2(u)un](x) = (−i)n
dnFα(x)

dxn
. (4)

Then the ordinary n-power filtering operation performed in any β = α+π/2 fractional Fourier
domain is related to the nth derivative of the α-fractional FT. Moreover, from the additivity
property it also follows that Rβ [Fα(u)g(u)] (x) = Rβ+α[R−α[Fα(u)g(u)] (y)] (x) with, in our
case, g(u) = un.

In this paper we restrict ourselves to considering the operation R−α[Fα(u)un] (x), because
it corresponds to a logical generalization of nth-order power filtering (see equation (1)) in the
fractional FT domain. Note that the operation Rα[f (u)un](x) for different integers n was
considered in [1, 2, 4]. Since∫

K(−α, x, u)K(α, ξ, u)un du = (−i sin α)n exp[−i(x2 − ξ2) cot α/2]δ(n)(x − ξ)

we have

R−α[Fα(u)un] (x) =
∫ ∞

−∞
K(−α, x, u)Fα(u)un du

=
∫ ∞

−∞
f (ξ) dξ

∫ ∞

−∞
K(−α, x, u)K(α, ξ, u)un du

= (−i sin α)n exp(−ix2 cot α/2)
dn

dxn
f (x) exp(ix2 cot α/2)

= (−i sin α)n exp(−ix2 cot α/2)

n∑
k=0

(
n

k

)
dn−k exp(ix2 cot α/2)

dxn−k

dkf (x)

dxk

= (i sin α)n
n∑

k=0

(
n

k

)
(−1)k(

√
cot α/2i)n−kHn−k(x

√
cot α/2i)

dkf (x)

dxk
(5)
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where Hn(z) = (−1)n exp(z2) dn exp(−z2)/dzn are the Hermite polynomials [10]. This
equation is a generalization of equation (1) in the fractional Fourier domain. Alternately,
based on the multiplication rule derived in [1, 2], Rα[f (u)un](x) = (x cos α +
i sin αD)nRα[f (u)](x), the nth-order power filtering operation can be written in the form

R−α[Fα(u)un](x) = (x cos α − i sin αD)nf (x) (6)

where D denotes the differential operator d/dx. It is easy to see from equations (5) and (6)
that

R−α[Fα(u)un](x) = (−1)nR−α−π [Fα+π (u)un](x). (7)

Moreover, for real f (x) we find that {R−α[Fα(u)un](x)}∗ = Rα[F−α(u)un](x), and therefore
|R−α[Fα(u)un](x)|2 = |Rα[F−α(u)un](x)|2.

We start with the case of n = 1, which is related to the first derivative of the signal f (x).
Filtering in the fractional Fourier domain with mask u yields the following result

R∓α[F±α(u)u](x) = cos αxf (x) ∓ i sin α
df (x)

dx

= cos α R0[F0(u)u](x) ± sin α R−π/2[Fπ/2(u)u](x) (8)

which can be considered as a weighted sum of corresponding filtering results in the position
and Fourier domains.

Taking equation (8) for two different angles α and β, we can find the first derivative
df/dx = iR−π/2[Fπ/2(u)u](x) and the product xf (x) = R0[F0(u)u](x) as:

−i
df (x)

dx
= 1

sin(α − β)
{cos βR−α[Fα(u)u](x) − cos αR−β [Fβ(u)u](x)}

xf (x) = −1

sin(α − β)
{sin βR−α[Fα(u)u](x) − sin αR−β [Fβ(u)u](x)}.

(9)

In the particular case of β = α + π/2, equations (9) can be written in the form of a
matrix–vector product as(

R−π/2
[
Fπ/2(u)u

]
(x)

R0 [F0(u)u] (x)

)
=

(
cos α sin α

− sin α cos α

) (
R−α−π/2

[
Fα+π/2(u)u

]
(x)

R−α [Fα(u)u] (x)

)
. (10)

The two expressions on the right-hand side of equation (10) are invariant with respect to α,
and the same holds for the sum of the intensities in two Fourier-conjugated domains:

|R−α−π/2[Fα+π/2(u)u](x)|2 + |R−α[Fα(u)u](x)|2 = |xf (x)|2 +

∣∣∣∣df (x)

dx

∣∣∣∣
2

. (11)

For the particular case of β = −α, or, equivalently, for the case of β = π − α and using
equation (7), equations (9) yield

− i
df (x)

dx
= 1

2 sin α
{R−α[Fα(u)u](x) − Rα[F−α(u)u](x)}

(12)
xf (x) = 1

2 cosα
{R−α[Fα(u)u](x) + Rα[F−α(u)u](x)}.

Note that the expressions on the right-hand side of equations (12) are also invariant with
respect to α.

From equation (8) we conclude that the sum of the squared moduli of the filtered signal
(first-order power filtered in the +α and the −α fractional Fourier domain) is related to the
squared moduli of the signal derivative and the signal intensity as

1

2
{|R−α[Fα(u)u](x)|2 + |Rα[F−α(u)u](x)|2} = cos2 α|xf (x)|2 + sin2 α

∣∣∣∣df (x)

dx

∣∣∣∣
2

(13)
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Figure 1. Original and reconstructed phase derivative of the signal f (x) = exp[−6x2 +
i0.025 sin(40πx)] for different values of the fractional angle α: (a) α = 0, original phase derivative;
(b) α = 0.1π/2; (c) α = 0.25π/2; (d ) α = 0.5π/2; (e) α = 0.75π/2; ( f ) α = 0.9π/2.

and that their difference is connected to the amplitude |f (x)| and the phase ϕ(x) = arg f (x)

as

1

2 sin 2α
{|R−α[Fα(u)u](x)|2 − |Rα[F−α(u)u](x)|2} = x|f (x)|2 dϕ(x)

dx
. (14)

We stress again the α-invariance of the expression in equation (14). Equation (14) can be
applied for solving the phase retrieval problem, at least for α �= nπ/2. Indeed, the phase
derivative dϕ/dx, and therefore the phase ϕ(x) up to a constant term, can be reconstructed
from the knowledge of the intensity |f (x)|2 and the intensity distributions at the output of two
fractional FT filters with mask u:

dϕ(x)

dx
= 1

2 sin 2α x|f (x)|2 {|R−α[Fα(u)u](x)|2 − |Rα[F−α(u)u](x)|2}. (15)

In order to illustrate the efficiency of this method, numerical simulations have
been carried out for a signal with Gaussian amplitude and sinusoidal phase f (x) =
exp[−6x2] exp[i0.025 sin(40πx)], where x ∈ [−0.5; 0.5]. In figure 1(a) we have depicted
the original phase derivative, π cos 40πx, whereas the reconstructed derivatives—determined
using equation (15)—are shown in figure 1(b)–(f ) for several values of the fractional angle α.
The fractional FTs have been calculated following the procedure proposed in [11]. We note
that the reconstruction is good for those values of x for which x|f (x)|2 is not too small. Note,
moreover, that in the central region x ∈ [−0.1; 0.1] the quality of reconstruction is better for
small angles, whereas for |x| ∈ [0.3; 0.5] the better results are observed for α � π/4. We
have limited the number of sensor points to 128, in order to make the simulations closer to the
experiments. In general, increasing the number of sensor points improves the reconstruction
quality.

As it is relatively simple to perform a fractional FT in optics, the proposed method can
be used for the phase retrieval of optical fields from intensity distribution data. The hybrid
opto-electronic processor realizing the procedure (15) is shown in figure 2. The optical
beam is first divided into two parts by a beamsplitter, which then propagate through optical
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β = 2π − α

β = α

computer

f(x)

1
2f(x)

1
2f(x)

input plane

beamsplitter

CCD

CCD

Figure 2. The optical field f (x) in the input plane is imaged through a beamsplitter on to
two optical, fractional power-filtering systems (see figure 3) with fractional angles β = α and
β = 2π − α, the output fields of which are captured by CCD cameras for further electronic
processing.

d1 d1 d2 d2

f1 f2

1
2f(x)

input plane output planefiltering plane

d1 = 2 f1 sin2 β/2 d2 = 2 f2 sin2(π β/2)

filtering plane

Figure 3. A cascade of a fractional FT system and an inverse fractional FT system, each consisting
of one thin lens with focal length f1,2, preceded and followed by two identical distances d1,2 of
free space. The relations between the distances, the focal lengths and the fractional angle β are
d1 = 2f1 sin2 β/2 and d2 = 2f2 sin2(π − β/2).

systems similar to the one represented in figure 3. The intensity distributions at the output
of these systems are registered by CCD cameras and proceed to a computer where additional
algebraic operations are made. The optical set-up (see figure 3) proposed for the experimental
measurements of the two intensity distributions |R−α[Fα(u)u](x)|2 and |Rα[F−α(u)u](x)|2
consists of two thin lenses with focal distances f1 and f2, and a filter with transfer function
g(u) = u; negative values of g(u) (for u < 0) are realized by placing a π phase step over
the negative half of the u plane. The configuration parameters (distances d1 and d2, and focal
distances f1 and f2 of the two lenses) for each of the two optical systems in figure 2 are chosen
in such a way that β = α for one beam, and β = 2π − α for the other. The optical set-up
in figure 3 can be considered as a cascade of two subsystems, one from the input plane to
the filtering plane, and one from the filtering plane to the output plane, with the amplitude
plate in the filtering plane. The first subsystem performs a fractional FT for the angle β,
if the relation d1 = 2f1 sin2 β/2 is satisfied [9]; similarly, the second subsystem performs
an inverse fractional FT, if the relation d2 = 2f2 sin2(π − β/2) holds. Thus, the optical
field f (x)/2 is first fractional Fourier transformed to yield Fβ(u)/2 = Rβ[f (x)/2](u) just
before the filtering mask. After passing through the filter, the optical field reads Fβ(u)u/2.
Finally, the inverse fractional FT system yields in its output plane the optical field
R−β[Fβ(u)u/2](x), the intensity distribution of which is registered by a CCD camera.
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Linear filtering in the fractional Fourier domain can thus be used for the phase retrieval
of optical fields. Note that the proposed method is non-interferometric and non-iterative.

Let us now consider equation (5) for the case of n = 2, which is related to the second
derivative of the signal f (x). Filtering in the fractional Fourier domain with mask u2 yields
(cf equation (8))

R∓α[F±α(u)u2](x) = cos2 α x2f (x) − sin2 α
d2f (x)

dx2
∓ i cos α sin α

[
f (x) + 2x

df (x)

dx

]

(16)

and hence

1

2
{R−α[Fα(u)u2](x) + Rα[F−α(u)u2](x)} = cos2 α x2f (x) − sin2 α

d2f (x)

dx2
. (17)

If we take the latter relationship for two different angles α and β, we can find the second
derivative d2f/dx2 as (cf equation (9))

d2f (x)

dx2
= 1

2(cos2 β − cos2 α)
{cos2 α(R−β [Fβ(u)u2](x) + Rβ[F−β(u)u2](x))

− cos2 β(R−α[Fα(u)u2](x) + Rα[F−α(u)u2](x))}. (18)

If we combine equation (16) for the angle α with a similar expression for the angle α + π/2,
we obtain the relationship

R−α−π/2[Fα+π/2(u)u2](x) + R−α[Fα(u)u2](x) = x2f (x) − d2f (x)

dx2
, (19)

from which we conclude that the sum R−α−π/2[Fα+π/2(u)u2](x) + R−α[Fα(u)u2](x) is
invariant with respect to α.

We have derived a general expression for the power filtering of nth order in the fractional
Fourier domain, which stresses its relation to the differentiation operation. The main properties
and invariants of linear and quadratic fractional filtering have been found. In particular,
it has been shown that the signal derivative and the corresponding power filtering in the
Fourier domain, can be represented as a linear combination of the related fractional power
filtering operations. The application of linear filtering in the fractional Fourier domain for
phase retrieval from intensity distributions only has been proposed. Its efficiency has been
demonstrated by numerical simulations. A simple optical configuration for the experimental
realization of the method has been discussed.
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